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0. Introduction an :Z:.

Regulation and control play an important role in many

systems. The system performance is generally utilized to

direct the system behavior towards the anticipated goal.

iSuch feedback mechanisms are necessary elements of many
processes. The immune response of a human body, the air

temperature in a house or the administration of drugs to a

patient by a physician, exhibit the same feedback process.

The theory of such controlled processes is highly developed

and has been applied to several areas in scientific research,

in engineering, in business systems, and in government

L operations.

[ In this paper the elements of a control process are

discussed from the point of view of statistical applications.

L Several important applications are pointed out where the

introduction of the feedback mechanism and the development

L of an optimal control policy is likely to improve the

ultimate performance of the process. Examples from patient

care in the recovery room, monitoring of air pollutants

aad dynamic economic models are given.

Usually, models of control theory used in applications

assume that the dynamics of the process are completely

[known and certain function, measuring system performance,
1



is to be optimized. Both deterministic and stochastic

models are used in practice and the derivation of optimal

- control policies often require well known technique of
dynamic programming. However, the case when models involve

unknown parameters in the model, has not been treated well

in the literature.

We provide the framework in which the parameters of

the dynamic model can be estimated based on the data

generated by the process. Using certain well known

algorithms, these estimates are updated as the process

develops and the optimal policy is then obtained. It is

clear that the policy will heavily depend on the random

behavior of the process. These complications cannot be

completely avoided. Suggestions are made to use the

statistical properties of the estimates which are involved

in the dynamic programming solution of the control problem.

Linear control process with quadratic cost criterion is

used for the purpose of illustration. Such solutions have

direct application to the patient care problems which have

received wide attention recently.

T
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1. Applications

rIn this section we consider a few applications where

the control theory could be utilized with advantage. The

problem of patient care in the recovery room, and the

problem of monitoring of air pollutants are discussed.

There are many other areas such as in the study of dynamic

economic models where the control mechanism is evident. A

recent comprehensive account has been given by Chow (1975)

for the dynamic economic models.

Patient Monitoring

In monitoring patients in surgery or recovery room,

elements of a feedback control process are in evidence. A

common procedure in monitoring the well being of a fetus,

for example, is to monitor the levels of creatinine in

amniotic fluid and extriol excretion in maternal urine.

Similarly in the management of pharmacologic intervention

or in general patient care, the nurse-patient-physician

system acts as a feedback control process, for example see

Siefen et al (1979).

The model of patient care as a control process and

the resulting dynamic programming solution was discussed

by Rustagi (1968). Recent applications of the on.line

computers in the administration of patient care has been

3



made in several areas, for reference, see Waxman and Stacy

i(1965), Hammond, Kirkendall and Calfee, (1979), Sheppard,
r Kirklin and Kouchoukos (1974), Sheppard, Kouchoukos, Shotts

et al (1975), Sheppard and Kouchoukos (1976) and Pryor et

al (1975).

We discuss one of these studies in more detail below.

Sheppard and Kouchokos (1976) have provided several

situations where the feedback mechanism is practiced by

the help of electronic computers. For example the regula-

tion of arterial blood pressure is carried out automatically

through monitoring blood pressures using certain closed

loop mechanisms. Sheppard, Kirklin and Kouchoukos (1974)

have recently demonstrated by actually performing decision

making tasks by computers in acutely ill patients. Such

decisions have been programmed on a computer so as to

monitor patients at the Alabama Medical Center for analysis

and treatment of impaired cardiac performance. Table I

provides the monitoring logic which is implemented auto-

matically. It should be noticed that the authors have

demonstrated the fact that a given set of logical decisions

can be performed automatically. These decisions are given

in advancc and no attempt has been made to obtain the best

possible decision in a given situation.

Consider the case where several alternative procedures

are known to be practiced by the clinician. It would then

be worth while to choose the best possible decision under

i4



Table I.

Logic for Analysis and Treatment of
Impaired Cardiac Performance

Early After Operation

(Sheppard, Kirklin and Kouchokos, 1974)

Mean Left N:ean Cardiac Index
Arterial Arterial C9Jmin /M 2 )________
Pressure Pressure Less More
(mm Hg) (rum Hg) than 2 2-3 than 3

7 or -Blood Blood Blood
less

7-14 -Blood Blood

Less than Epinephrine
100

15-18 _______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Epinephrine, Trirnethephan
More than Dopanine or or

100 isoproterenol nitroprusside

Less than same as above-
100

More than
18

Epinephrine, Trimethaphan
More than Dopamine, or or

100 isoproterenol Nitroprusside
plus
t rimathaphan
or
nitropruss ide



the assumption of a certain optimality criterion.

It whould be noticed that the feedback process in patient

care involves measurements of physiological and ocher variables

which behave in general according to some random phenomena.

Hence stochastic control theory models are more appropriate

to study the patient care process.

Air Pollution and Environmental Health

Another problem where optimal control theory can be applied

usefully, occurs in environmental health. It has been demonstrated

that high levels of air pollutants are injurious to health and

general wellbeing of living systems. Hence various forms of

governmental controls have been established to regulate

pollutants in the environment. Legal and punitive action are

taken against those who are regarded as responsible for creating

this hazardous environment. Large industrial corporations are

subjected to such control and regulation by the U. S.

Environmental Protection Agency.

In the monitoring for the purposes of regulation of air

pollutants, elements of a stochastic control process are

evident. According to various Clean Air Acts of the U. S.

Government, the standards for the various pollutants, such

as carbon dioxide, sulphur dioxide, particulate matter are

specified by law. As soon as they exceed certain limits,

-v steps are taken to control the various sources of emission

of the pollutants. The structure of a feedback process in

6



i l the regulation of air pollution, can be easily seen from

this process of law enforcement.

National Economic Models

In the study of national economics, certain controls

are made by the Federal Reserve Board through the manipula-

tion of prime interest rate as well as through other steps

which may affect the money supply. The process of control

of the national economy requires the knowledge of the state

of the economy in terms of several important variables so

as to allow taking appropriate action.

Consider that the economy is described by the total

amount of consumer expenditure and private investment

expenditure. The control can be exercised by Government

expenditure and the total money supply. The optimality

criterion in this case can be considered to be minimization

of the discrepancy between the growth rates of consumption

and private investment expenditure by certain targeted

increase of these expenditures. This discrepancy may be

formalized by a quadratic criterion. The model utilizing

some assumed numbers has been described by Chow (1975).

Similar discussion of macroeconomic models with random

parameters has been made by Havennerand Graine (1973). For

multiple time series, a recent study of the same type is by

Bovas (1980).

7



In the next section we describe the basic models of

control theory and discuss the linear model in some detail.

8
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2. Control Model

4In most of the engineering and other applications of

control theory, a general assumption made is that the

dynamics of the system are known. They are generally

described by differential or difference equations. Both

deterministic and stochastic models are used and lead to

interesting problems depending on the type of objective

functions used for optimization of controls. There is an

extensive literature on control theory, some of which is

mentioned in the references here, for example, see Polak

(1971), Pshenichnyi (1971), Bertsekes (1976), Gihman and

Skorohod (1979).

Ther3 are many situations in applications such as in

patient care, where the nature of the performance of the

system is not realistically described by deterministic

models and hence stochastic models must be used to describe

such systems. In economics, for example, one is confronted

with the problem of obtaining an optimal control policy,

when the economic system is being affected by a large number

of uncertain factors. Chow (1973) has considered the

problem of finding an optimal policy in case of economic

dynamic systems. Not only the measurements in such systems

are random but also the form of the system performance has

to be approximated by some hypothetical model. In

9
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econometrics, generally one uses a linear model in associating

the output of the system with the input and the control

utilized. Using quadratic cost criterion, optimal policies

are derived. Besides being computationally feasible, such

linear models describe the phenomenon fairly well and have

been fully treated in various contexts in the literature.

Box and Jenkins (1968) have discussed statistical models for

*control of time series. We first discuss the case of a

deterministic control model. The system is generally described

by a state vector xt of dimension n at time t. Let ut be the

control vector in p-dimensions. In the case of discrete

time points, t = 0, 1, 2, ..., T, the deterministic control

process can be described by the difference equation given

below:

+ L ': gt ( t t) '  t = 0, 1 , ., T-1 (2.2)

where gt are known functions given for the system. If there

is feedback present in the system, the present state of the

system is used to guide the system back to its normal operation.

That is, we assume that
U xt (2.2)

Ut+l h(xt, zt)

That is, the discrepency of the state vector x from its

desired or target value zt, is used to design the control.

The control is chosen in such a way so as to optimize

10
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the overall performance, for known k,
if

T
I X k( t, z9. (2.3)k t=O

J(x0 ) is implicitly a function of ut .

Following forms of the function k, are commonly utilized

in practice.
(1) k (x-z )'(x kzt) + a U, u (2.4)

(1) klxt \It ut IV t 1t t ut'

a u t u' t < T - 1

(2) k(xt , zt) (2.5)

j T *T' t T

where a is some constant.

The basic problem of control theory is to find a set of

control u0, Ul, ... , UT_1 s as to optimizedJ. Solutions to

this problem are generally obtained through the technique of

dynamic programming. There is an extensive literature on

dynamic programming, for a brief description of the technique,

j the reader is referred to Rustagi (1976).

The dynamic programming technique has been extensively

used in various applications. In defense contexts, the

technique was suggested by Rustagi and Doub (1970) for optimum

distribution of Armor. For an extensive coverage of the art

and theory of dynamic programming, see Dreyfus and Law (1977).

In engineering literature, usually a continuous process

is considered. Pontriyagin's Maximum Principle has been

developed to give a mathematical foundation for such control

1.1
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Ii processes. For a brief description of Maximum Principle and

its comparison with Dynamic Programming the reader is

referred to Rustagi (1976). Corresponding minimum principles

have been advanced by several authors, a recent paper of

interest is by Varaiya and Walrand (1980).

Stochastic Control Model

-.i Suppose now the state of a system is given by n-dimen-

sional random vector x at time t. Let ut denote the p-dimen-

sional vector of controls at time t and c be vector of n-

dimensional random disturbances. Usually the control system

can be described by the equation

i t~l gt ( x t  t t)  t =  1, 2, ... , T-1 (2.6)

V where g is a sequence of known functions.

The system with feedback is given in Figure 2.1. In

this case the systems deviation from target value already

prescribed for the system state xt is utilized for adjustment

of the system.

In engineering literature usually it is assumed that

X cannot be observed directly and instead we observe Xt with

some random error nt. That is,

= h t, )  (2.7)

The performance index or objective criterion function of the

-system now has to be some parameter of the distribution of

£ 12
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the cost which is random. In this case, we may optimize

E(J(x 0 )) since J(X0 ) is a random variable. The problems of

existence and characterizations of optimal controls in the

case of stochastic systems, are discussed in detail by Aoki

(1967). In the next section, we discuss a linear control

process.

I.

INPUT OUTPUT

SYSTEM>

_ _ _ FEEDBACK

Figure 2.1

[I
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3. Linear System and guadratic Cost

In this section we assume a linear control process and

quadratic cost function. We first consider the univariate

case. Let

Xt+l = at xt + &t ut + t t 0, 1, 2, ... (3.1)

where at, at are the parameters of the model, xt is the state

of the system at time t and ut is the control. are random

errors. Assume that it is not x but Yt which is observed.

Let

t t + r1t (3.2)

where nt are random errors.

Consider for the example, the cost function to be the

terminal control function

J = XT 2  (3.3)T

Let T- 1 (Y0' Y 1 "'' ") YT-I )

To optimize E(J), we use in this case, the Principle of

Optimality developed by Bellman leading to dynamic programming

technique. We optimize E(xT2IYTl) at first.

We assume here a general form of the error structure

and prior information than usually assumed. Let the joint

distribution of (at, t, cti ?t) be multivariate normal with

mean ut and covariance It where

14



lt t t t

and

"t t t t

a a a a

t t t t
ao a K a a r)

t t t ta a aY a

Now
o XT'I tyT-1 y(X-x- T1T1+ T-l-)2

E[x 2 la T-1 +U2 T-1. T-I+2x ( T-l+
T-ic N1a - T-1l)

+ Pa T-i T-1) + 2xT-l(O a
1 +P T-1 T-I

T -1 T-1 T-1 yT-1]
+ 2uT(a ' + yT (3.4)

This expression can be further simplified if we are given the

T-1conditional distribution of xt given y-. Let

E(xt y ) V (3.5)

and

V(xtly t) t (3.6)

We then have,

EAxl N-1y a T-l( C 2 +V 2  + u2 a T-1 + aT-I
N- a TT-1

T- T- T-) +2(7-1 T-1 T-1)v
+ +U-!T- P8 )+2( +8 j P

T-+ 2uT I (a - +T-1 T-1)

I-L

i i i ] i ]| i5
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The optimal control UTI is then obtained by minimizing (3.7)

with respect to UT-1 given by

T-1 1l T-1 8T-1 T-1 T-l. T-1 sT-1 )7 UT- - ((F a) L°8 + - 11 +V T(a +ji

- T- (3.8)

Similarly we can follow backwards and obtain UT2.

In the case when at, t are assumed to be mutudlly

independent, the covariance Xt is diagonal and the expressionI%
(3.8) reduces to the one's usually found in text-books, for

example, see Aoki (1967) and De Groot (1970).

Bayes Control Policies

In stochastic control theory when the parameters of the

model are not known, Bayes methods are commonly used to obtain

the optimal control policies. A general formulation of the

adaptive Bayes control policies has recently been given by

Suzuki (1979).

Consider the following linear model.

Xt ! A t t ' t 0, 1, 2, ... , T-1

,%t 1 1 t t * t k t

where x is p-dimensional vector, u is a q-dimensional vector

and are random p-dimensional random vectors. Assume furthert "t

that,

Yt = H x + t = 0, 1, 2, T.

with y being a r-dimensional vector and nt a random vector.

The matrices At, t and Ht are assumed to be known. A general

16
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assumption for Bayes analysis made is that the distributions

of t and n. are known except some unknown parameters 0i£ 92

For simplicity of computations, assumptions are made that t

have multivariate normal distribution with unknown means i

but known covar~ance matrix i for t = 0, 1, 2, ... T-1.

Similarly nt are assumed to be independent of but distri-

buted normally with unknown mean ®2 and known covariance matrix

12. The Bayes strategies are computed by assuming prior dis-

tributions on 0l' 22 and x0 " In this case, it is assumed

that their joint distribution is completely known appropriate

multivariate normal distribution. For a the performance

function of the quadratic type,

T
J CI f (x k t + uf-l ut-lt-l + y ;t yt)

with known matrices Pt, Qt & Rt, the optimal policy can be

computed by dynamic programming, first for t = T and then

moving backwards. The details are given by Suzuki (1979).

In practical problems suggested earlier, the matrices

of the model are not known. However, they can be estimated

from data already available by experimenters on those models

when the process under control is observed for a sufficiently

long period of time. This aspect of the control problem is

discussed in the next section.

17
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5. Statistical Considerations

Consider the case when the control process has been

observed for a certain period of time. Assuming the form

of the dynamics of the process, such as linearity, the

unknown parameters of the process equations can now be

estimated from the data. These estimates can then be used

for statistical control.

Suppose the model at time t is

Xt+l a t xt + 8t ut + Ct (5.1)

with assumptions on the errors et . For illustration,

consider the situation when c's are independently and

identically distributed with means 0 and variance a2, and

for estimation purposes, the parameters at and at have

remained constant during t = -T, - T+l, ..., -1, 0, say,

equal to a and B0 respectively. In this case the least

squares estimates are given by the following normal equations,

where the summation is from t = -T to t = 0.

Zr:' Xut) (0) =(Yx.t~lx' / (5.2)

It is well known that under the additional assumptions of

normality of errors et, the above estimates are also maximum

likelihood estimates of o0 and B0 ' The general system of

18



equations when the model contains more parameters can be

similarly obtained, for example see Anderson (1971, p. 183).

In case x is a p-dimensional vector, and u is a

q-dimensional vector of controls, we consider the model

X A x + B u+ t(53
t+l t t t t + t'

Here A is a p x p matrix of unknown parameters, B is a

p x q matrix of unknown parameters and c is a p-dimensional

vector with mean 0 and covariance matrix A. The normal

equations in such a case are given by

Yu X u j"X (5.4)

under the same assumptions as in the univariate case and

the estimates of A are given by

A - A x - Bu )(X -Ax -Bu)

The detailed development of the estimates and the associated

theory is given by Anderson (1971, p. 203).

The control process will utilize the estimates of

and 00 as the initial estimates and use them to update

the estimates as the data accumulates at each stage of the

decision making process as t goes from 0 to T. Some simpler

forms of recursive estimates, given by Albert and Gardner

(1966) and Albert (1972) are discussed next. They can be

19
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implemented in any adaptive estimation scheme.

Recursive Estimates

Most of the work in control theory in engineering

applications is confined to the case when the parameters of

the model are known and are not modified during the

operation of the control process. When continuous modifi-

cation of the joint density of the unknown parameters can

be made as new observations become available, the calcula-

tions become difficult. In place of using the Bayesian

approach that prior density of the parameters is given, we

use henceforth the classical estimate the parameters as

given in (5.2) or (5.4). We use the recursive estimation

procedure for the parameters using observations from the

process and the control during the operation of the process.

Let the linear model considered in equation (S.1) be

simplified by using at = (at, Ot) and ht = (X-) ut) so that

(5.1) can be written as

x (5.5)Xt+1 = t 0"t + Et(5)

Let El is the estimate of 0l based on (t-l) observations.

×t is the observed state at time t. We would like a proce-

dure to updata Ot based on xt .

Definition: E+ is a recursive estimate of 0 if a. is

obtained by updating 0. by the observation xj. That is,

20



A A

G E) x~ (5. 6)

The suggested recursive estimate of the differential

type by Albert and Gardner (1967, p. 111) is the following.

= .+ a.C.-h% (5.6)

with

=j B.. (5.7)

and

B. = B - -!A.. k) -L (5.8)
n'C I n- 1 -1+ h' B. h

The above recursive estimates can be written in closed form

if we are given the initial estimates 50 and B0 " In that

case
k

B h + h h) -', k = 1, 2, ... (5.9)

and

+.l = Qj i + ix hi xi)3  5 > 0 (5.10)

The convergence and other optimal properties of these

recursive estimates are enumerated by Albert and Gardner

in their book.

A recent survey of recursive estimation procedures

has been given by Davis (1977) utilizing concepts of

innovative sequences due to Kailath (1968). However, most

of this survey is concerned with continuous processes.

Assuming now that the process equations are being

updated according to the procedure described above, in

21
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equations (5-6) - (5.10), we assume that the model for

control is now the following

AAXt+l := at xt + 8 t ut (5.11)

I Suppose

xt- I  (x0 ' xl . ..- ,

t 

1 :1-

u - C, u, ., t1 ) ,

t and t = 1, 2, ... , T.

Let the performance function 
for this process be the

6 following
- T-1

Sj TI(a t x t ut) 2 
+ c. X2 (5.12)

t=0

where at , bt and c are known for t = 0,1 , ... , T-1. The

optimization procedure is concerned with finding u0 , uI,

UT 1 so as to minimize
'TT-l

ECJjx , Ui

Let Vt(x t) = minimum cost if the process is in state t

U with state variable xt . Note that V t(x ) and the discussion

what follows is conditional on xt and u This fact is not

expressed in the notation.

[ Using Principle of Optimality of dynamic programming,

Vt(xt) min[ at xt 2 + b ut 2 + V t+l(Et xt + t ut
tu tt

t = 1,2,..., T-1, and

VT(xT) = c xT. (5.13)

22
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Starting backwards, we first consider VTI(XTI).

V T-l T-l) = min (aT-1 XT2 bT- UT

UT- 1  
T

+ C(cLT x + U+ c( T-1 XT-1* T-1 UT-1 )a

Hence the optimal value of UT- 1 is obtained as follows.

.C'T-1 T-1 X T- 1
T-1 ,.bT_ + CT 1

and the corresponding value of the cost function is given by

VT(XT I  - (aTI + Ca I  Tl )XT(515)
C l bT-l+c T-1

or
^2

VT*I(XT- I ) = PT1XT-l (5.16)

PT-1 is the coefficient of X 2 in (5.15). Similarly, we

obtain

PT- 'T-2 aT-2 X T-2UT- 2  (x T-2 )  A- ^
bT- 2 + PT-2 aT-2

and a

VT* 2 XT- 2 ) = PT-2 XT2- (5

In general, one obtains the optimal controls fvllowing the

above process given by

23
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A A A

Ptti ot ,t x t
t - bt + Pt+l t (5.18)

V*(xt) Pt x (5.19)

with ^t ^ 1 p t 2 a t 2

p a 2 + (5.20)P t + Pt+l at b 2 (.0

t = , 2, ... ,T-1 (5.20)

and

T c. (5.21)

Many other performance functions can be similarly used to

obtain the optimal pplicy. Large number of such problems in

the deterministic case are discussed in a recent survey on

art and theory of dynamic programming by Dreyfus and Law (1977).

The stochastic b~havior of the optimal control p licy

seems fairly complicated in general. In case of UT*1 given

by (5.13), we find tha't it is approximately the ratio of

the product and square of random variables which themselves

have a complicated distribution. In practical situations,

we shall assume that the number of observations on which the

estimates of a and 13 are based, is large. Therefore, using
t .

asymptotic theory, we have that at - a, and t ) a in proba-

bility, allowing us to use the optimal control policy.

These estimates or their generalizations are applicable

to various applications discussed earlier.

24
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